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1. THE IDEA
Scalable, distributed algorithms must address communication
problems. We investigate overlapping clusters, or vertex parti-
tions that intersect, for graph computations. This setup stores
more of the graph than required but then affords the ease of im-
plementation of vertex partitioned algorithms. Our hope is that
this technique allows us to reduce communication in a computa-
tion on a distributed graph.

2. RELATED WORK
The motivation above draws on recent work in communication avoiding algorithms.
Mohiyuddin et al. (SC09) design a matrix-powers kernel that gives rise to an over-
lapping partition. Fritzsche et al. (CSC2009) develop an overlapping clustering for
a Schwarz method. Both techniques extend an initial partitioning with overlap. Our
procedure generates overlap directly. Indeed, Schwarz methods are commonly used
to capitalize on overlap. Elsewhere, overlapping communities (Ahn et al, Nature
2009; Mishra et al. WAW2007) are now a popular model of structure in social net-
works. These have long been studied in statistics (Cole and Wishart, CompJ 1970).

3. PROBLEM SETUP
Let Vol(C) = sum of degrees for  ∈ C; Ct(C) = total edges between C and the rest
of the graph. Note that Vol(C) is a proxy for the adjacency data size of vertices in C.

Given a graph G, an overlapping clustering (C, τ) is a set of clusters C and a map-
ping from each vertex to a home cluster τ. The total number of edges in a cluster
(Vol(C)) is constrained by MxVol. In a random walk on an overlapping clustering,
the walk moves from cluster to cluster. On leaving a cluster, it goes to the home
cluster of the new vertex: e.g. In the illustrations here, the color in-
dicates the home vertices for a cluster. (See the example above too.) A transition
between clusters is a swap, and requires a communication if the underlying graph
is distributed. We thus wish to minimize swaps in a random walk. Let ρT() = the
expected fraction of steps that swap in a T-step walk starting from . We study:
ρ∞ = limT→∞

1
n

∑

 ρT(), the fraction of steps with swaps for a long walk. For a cycle
graph, we can prove that overlap reduces the communication.

THEOREM Consider a large cycle Cn of n = Mℓ nodes for a large number M >
0, and let the maximum volume of a cluster MxVol be ℓ. Let P be the optimal parti-
tioning of G to non-overlapping clusters of size at most MxVol and ρ∗∞ be the swap-
ping probability of P. There exists an overlapping cover with TotlVol of 2Vol(G)
whose swapping probability ρ′∞ is less than ρ∗∞/Ω(MxVol).

(Proof Sketch) The overlapping clustering that achieves this bound is:

Cycle wrap Cycle wrap

1 ℓH H H H

The cycle graph

Each cluster has ℓ vertices, and the home vertices are the “middle” ones, as in the
four vertices labeled H above for the blue cluster. The best ρ∞ for a partitioning is
2
ℓ because ρ∞ = 1

Vol(G)

∑

C∈P Ct(C) for a partitioning. A random walk travels O(
p
t)

distance in t steps. The edge of an overlapping cluster is always in the center of
another cluster, and so it will take ℓ2/4 steps to exit after a swap, yielding ρ∞ =

4
ℓ2

.
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4. HEURISTICS FOR OVERLAPPING CLUSTERS
Optimizing ρ∞ with a MxVol constraint is NP-hard by a re-
laxation from minimum bisection. To produce clusters with a
small ρ∞ we use a multi-stage heuristic:

1. Identify candidate clusters. Use a PageRank clustering
heuristic or METIS to find small conductance clusters up to
size MxVol.

2. Compute well-contained sets. For each vertex, compute
the time for a random walk to leave a cluster starting there
and use this to pick home vertices.

3. Cover with cluster cores. Approximately solve a set-cover
problem to pick a subset of clusters.

4. Combine clusters. Finally, we combine any small clusters
until the final size of each is about MxVol.

THE OUTPUT
A PageRank cluster
(color is containment, white=best)

... and another

A combined cluster
(red = home vertices)

... and another

Overall best containment
(white=best)

Vertex overlap
(gray=1, black=2, red=2)

5. DATA
We empirically study this idea on 10 public graphs.

Graph |V| |E| mxdeg |E|/ |V|
onera 85567 419201 5 4.9

usroads 126146 323900 7 2.6
annulus 500000 2999258 19 6.0

email-Enron 33696 361622 1383 10.7
soc-Slashdot 77360 1015667 2540 13.1

dico 111982 2750576 68191 24.6
lcsh 144791 394186 1025 2.7

web-Google 855802 8582704 6332 10.0
as-skitter 1694616 22188418 35455 13.1

cit-Patents 3764117 33023481 793 8.8

6. RESULTS
We present two types of results: (i) an estimated swapping
probability ρ∞; and (ii) the communication volume of a par-
allel PageRank solution (link-following α = 0.85) using an ad-
ditive Schwarz method. The volume ratio is the amount of
extra storage for the overlap (2 means we store the graph
twice). Below, as the ratio increases, the swapping probabil-
ity and PageRank communication volume decreases.

Two graphs, in detail All graphs, multiple experiments.
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Metis Partitioner

The communication ratio of our best result for the PageRank
communication volume compared to METIS or GRACLUS shows
that the method works for 6 of them (perf. ratio < 1). The 0
communication result is not a bug.

Graph Comm. of
Partition

Comm. of
Overlap

Perf. Ratio Vol. Ratio

onera 18654 48 0.003 2.82
usroads 3256 0 0.000 1.49
annulus 12074 2 0.000 0.01
email-Enron 194536* 235316 1.210 1.7
soc-Slashdot 875435* 1.3× 106 1.480 1.78
dico 1.5 × 106* 2.0× 106 1.320 1.53
lcsh 73000* 48777 0.668 2.17
web-Google 201159* 167609 0.833 1.57
as-skitter 2.4 × 106 3.9× 106 1.645 1.93
cit-Patents 8.7 × 106 7.3× 106 0.845 1.34

Finally, we evaluate our heuristic.

At left, the cluster combine procedure reduces 106 clusters to
around 102. Middle, combining clusters can decrease the volume
ratio from 10 to around 1. At right, the mean conductance tends to
decrease after combining clusters.
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Please email David Gleich (dfgleich@sandia.gov) for questions Our code is available online: Google “overlapping gleich” to find it. CSC2011 - 17 May 2011


